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ABSTRACT

A new experimental apparatus has been developed for performing compression deformation 
experiments on high-purity Mo single crystals. These experiments provide data that can validate 
3-D dislocation dynamics (DD) simulations. The experiments are performed under conditions 
that allow unconstrained deformation; thus, a relatively uniform state of axial stress is 
maintained during deformation. In the following sections, we describe the new experimental 
apparatus and our results from experiments performed at ambient temperature at a strain rate 
of s–1. Validation criteria based on the Mo experiments may include comparing the stress-strain 
response using 3-D strain information, the predicted slip-system yield, and work-hardening 
behavior.

INTRODUCTION

In the past 10 years, there have been numerous developments in the area of 3-D, discrete DD 
simulation capabilities [1–5]. These computer codes can now simulate the stress-strain response 
(yield and work-hardening) and accompanying dislocation structure evolution of both face-
centered cubic (fcc) and body-centered cubic (bcc) single crystals. At this time, the computer 
codes can simulate the deformation response to strains up to 1%. The codes are generally more 
efficient in terms of computational speed when simulating high strain-rate deformation (e.g., 
strain rates of s–1 or greater). 

In the case of bcc metals, a large body of experimental data exists [6,7]. Many interesting 
properties of bcc metals—such as their high strain-rate and temperature dependence of the yield 
strength, and their wavy glide at high temperatures—have been studied extensively. However, 
relatively few studies have reported the type of detailed information that is needed to rigorously 
validate DD simulations at the small strains that are of interest (i.e., on the order of 0.1 to 1.0%). 
To effectively validate these simulations, the axial stress-strain response and as much 
information as possible about any slip activity during the deformation must be recorded.

When a single crystal deforms, the various slip-system activities typically result in irregular 
shape changes. In deformation experiments, these irregular shape changes can lead to 
nonuniformities in stress states in the crystal and/or a nonuniform strain field. Because of this 
possibility, researchers must take special care to understand both the crystal’s stress state and 
shape change during deformation if they wish to collect the information needed to validate 3-D 
DD-simulation results.

In this work, we describe an experimental technique that was developed to minimize the 
nonuniformities in stress state that can occur during the deformation of single crystals. This 
technique was specifically developed to enable the validation of 3-D, discrete DD simulations. 
When using this technique, a deformation experiment is performed in compression; this allows 
essentially unconstrained deformation of single crystals that are oriented for a “single slip” under 



a condition of uniaxial stress. Several diagnostic techniques evaluate the crystal’s shape change 
during deformation. 

SIX DEGREES OF FREEDOM (6 DOF) EXPERIMENT

Our experiments involve the compression deformation of high-purity Mo single crystals at a 
nominal strain rate of 1 s–1 and under an axial strain of 0.6%. The test sample used in this study 
has a square cross section that measures 5.5mm on each side; the sample also has a length of 
15 mm, as shown in Figure 1. The experimental design is shown schematically in Figure 2. The 
upper platen is a half-sphere, which is point-loaded; this allows the single crystal to develop a tilt 
relative to the lower-platen surface during deformation. The lower platen rests on a set of ball 
bearings, thereby allowing the test sample bottom to translate and twist relative to the top platen 
with a minimal amount of frictional constraint. Including the degree of freedom gained through 
axial displacement, this design gives the deformation response of the single crystal six degrees of 
freedom. The goal of this design is to accommodate both (1) the resulting translation due to the 
flux of dislocation moving through the crystal and (2) the twist and tilt that results from the 
development of a dislocation structure without appreciably affecting the uniaxial stress state. 

Figure 1. Single crystal test sample, as placed in the laboratory reference frame. The sample has 
a square cross section that measures 5.5 mm on each side and has a corner radius of 1 mm. As 
shown, the 2,9,20[ ] direction points in the positive z direction and the 121[ ] direction points in 

the positive y direction. The four faces of the sample are identified as “A” through “D.” The 
primary slip plane and slip directions are also labeled.
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Figure 2. A schematic representation of the test apparatus. On the left is the overall view 
showing the loading actuator, load cell, and subpress. On the right is a detailed view of the 
sample, loading platen arrangement, and displacement sensors.

Three extensometers equally spaced around the half-sphere measure both the z-axis 
displacement and the tilt of the upper platen relative to the lower translation platen. Four laser 
displacement gages track the position of the lower translation platen. The measurement and 
position data are used to calculate the translation of the center of the lower platen relative to the 
center of the upper platen in the x and y coordinate directions, as well as the sample’s twist about 
the z axis.

We attached resistance-strain gage rosettes to the sides of one test sample. These rosettes 
measured the biaxial strain on the test sample surface during deformation. Each strain gage was 
attached with adhesive at the center of each side of the test sample. The gages were then wired in 
a Wheatstone bridge configuration.

EXPERIMENTAL RESULTS

Deformation experiments were conducted with displacement control such that a nominal 
axial strain rate of 1 s–1 was achieved. During deformation, 21 channels of test data were 
recorded using a variety of digital recorders. These data were subsequently downloaded into a 
computer for data analyses. The test results from two experiments involving different test 
samples (one attached with strain gages and another possessing polished surfaces for slip trace 
analyses) are reported here. We have conducted numerous experiments at the time of this writing 
and have found the test results to be very reproducible in terms of sample deformation (strain-
gage response and platen motion) and the occurrence of slip traces.

The lower platen translation in the x and y directions during the axial deformation is shown 
in Figure 3. This plot indicates the relative motion of the center of the bottom of the test sample 
with respect to the center of the top in the laboratory reference frame. The ratio of the 
translations in the x and y directions is approximately constant, and the total displacement is 
0.15mm. 
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Figure 3. The translation of the bottom of the test sample as measured by the laser sensors. The 
total linear translation of the bottom of the sample was approximately 150 mm in a combination 
of the positive x and negative y directions.

We conducted conventional mechanics analyses with the raw data from the strain-gage 
rosettes to determine the biaxial state of elastic/plastic strain at the center locations on all four 
sides of the test sample. All strains were calculated with respect to the laboratory coordinate 
system. The axial (z), lateral (x and y) and shear (xz and yz) strains are plotted in Figure 4. The 
z-axis strains are nearly equal on all four sides of the test sample, which is consistent with the 
small amount of measured tilt of the upper platen with respect to the lower platen. The three 
extensometers determined the tilt to be 0.1 degree at the maximum strain.
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Figure 4. Stress-strain curves for a Mo crystal showing a comparison of the strains on opposite
faces of the sample. As labeled, the strains shown are for the coordinate axis directions x, y, and z
and for the shear strains γxz and γyz. The strains for the “C” and “A” faces are shown in (a) above. 
The strains for the “B” and “D” faces are shown in (b) above.

If a test sample deforms homogeneously in the absence of twist or tilt, the opposite faces 
will develop identical states of biaxial strain. As shown in Figure 4, the z-axis strains are within a 
few percent of one another, thereby showing little variation. The lateral strains (x, y) and shear 
strains exhibit more variation on the order of 10 to 20%. However, these variations appear to be 
consistent with the small measured amounts of twist and tilt. If we assume that the strain in the 
test sample is approximately uniform, an average value of the shear strains can be used to 
calculate the translation of the test sample bottom relative to the top in the x and y directions with 
the following formulas:

δx = γzxL and δy = γzyL , (1)

where γ is the engineering shear strain and L is the length of the test sample. The calculated 
translation of the lower platen based on the strain gage data is in good agreement with the 
translation measured using the laser displacement gages, as shown in Figure 3.

We tested a test sample identical to the one described above—except that the second test 
sample had polished sides (sans strain gages)—to conduct slip-trace analyses. We used optical 
light microscopy in conjunction with the Normarski interference contrast technique to observe 
the slip traces. This analysis led to the conclusion that the 101( ), 011( ), and 011( ) slip planes 

were active, as illustrated in Figure 5. Transmission electron microscopy (TEM) foils were 



prepared from one deformed sample. The TEM observations of dislocation structures were 
generally consistent with slip-system activity on the planes with slip traces [8].
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Figure 5. Optical light microscopy was used in conjunction with the Normarski interference 
contrast technique to observe the slip traces. This analysis led to the conclusion that the 101( ), 

011( ), and 011( ) slip planes, which are shown graphically, were active.

CALCULATION OF SLIP SYS TEM ACTIVITY

The goal of the analysis described in this section is to determine slip-system activity that is 
consistent with the experimentally determined strains (Figure 4) and the observed slip traces 
(Figure 5). The earliest description of this type of slip-system analysis was reported by Taylor 
[9], whose work was based on an energy criterion. Other approaches by Bishop and Hill [10] and 
Hutchinson [11] have also been published. The approach presented in this section follows the 
classical slip analysis that relates a general change in strain state to slip activity on five 
independent slip systems [12]. Our analysis focused on the six {110} slip planes, each of which 
have two <111> slip directions for a total of 12 possible slip systems. There are 384 possible 
combinations of five independent slip systems of the {110}<111> type that need to be 
considered. However, as our analysis shows, only one combination of slip systems is consistent 
with the experimentally observed slip traces. 

The symmetric Schmid orientation tensor associated with a single slip system, α , is given 
by

Mα =
1

2
bα ⊗ nα + nα ⊗ bα( ) , (2)



where αb  is the slip direction defined by the Burgers vector and αn  is the slip plane normal 
related to the slip system α. For the case of five slip systems, the deformation (or plastic strain) 
tensor becomes
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where αβ is the amount of the crystallographic-glide strain, or slip-system activity.
Assuming zero volume change during plastic deformation at ambient pressure 

( 0332211 =++ εεε ), we have a linear matrix system:
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where the terms in matrix B are geometrical factors dependent on the orientation of the slip 
systems. An inverse matrix exists for matrix B if the five chosen slip systems are independent. 
We can then write the slip-system activity as

β = B−1ε . (5)

In our analysis, all values are expressed with respect to the x-y-z laboratory coordinate 
system, as shown in Figure 1. In addition, we chose the local “slip” coordinate systems such that 
the plastic work is always positive if the shear strain and shear stress have the same sign (i.e., 
both positive or both negative) (see Table I). The total plastic strain tensor was constructed from 
the strain gage data given in Figure 4. Average values for the lateral and shear strains are based 
on data from opposing sides of the sample cube, and the axial strain value is the average strain 
on all four sides. A plot of the total plastic strain as a function of time is shown in Figure 6. 



Table I. Slip-system index and Schmid Factors. The unshaded rows indicate slip systems that are 
consistent with observed slip traces.

Index Slip System Schmid Factor
1 011( ) 111[ ] 0.200

2 101( ) 111[ ] 0.500

3 110( ) 111[ ] 0.250

4 011( ) 111[ ] 0.287

5 101( ) 111[ ] 0.470

6 110( ) 111[ ] 0.183

7 011( ) 111[ ] 0.220

8 101( ) 111[ ] 0.167

9 110( ) 111[ ] 0.053

10 011( ) 111[ ] 0.317

11 101( ) 111[ ] 0.197

12 110( ) 111[ ] 0.120
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Figure 6. A time-history plot of strain components measured from experiments. The ε12 strain 
was assumed to be zero; it is being measured in current ongoing experiments.



The calculated slip-system activity must be consistent with the three slip planes that created 
slip traces [i.e., the 101( ), 011( ), and 011( ) planes]. Only one combination of the five 

independent slip systems (out of all 384 possible groups) matched the observed slip traces: slip 
systems 2, 4, 7, 8, and 10 (see Table I for crystallographic indices). The resolved-shear-stress 
versus shear-strain curves determined by our analysis for these systems is shown in Figure 7. 
This solution satisfies the slip-trace analysis and the measured strain, but unfortunately, it does 
not include activity on slip system 1, which is the 111[ ] slip direction on the 011( ) plane. This is 

the so-called “anomalous” slip-plane and has a Schmid factor of 0.20. Despite this low Schmid 
factor, significant slip activity does occur on this plane. Ultimately, we need to determine how 
much slip activity occurs in both the 111[ ] and 111[ ] directions. We are currently pursuing more 

elaborate analyses that will include a calculation of slip activity on all six slip systems. However, 
the results presented here provide a good starting point for the validation of DD simulations.
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Figure 7. Plots of resolved-shear-stress versus shear-strain calculated from Eq. (5). The selected 
slip systems are 2, 4, 7, 8, and 10 (see Table I for index notation).

VALIDATION OF DD SIMULATIONS

At the current time, validation criteria for DD simulations have focused on uniaxial stress-
strain response. This approach, which is 1-D in nature, has led to a critical study of both the 
temperature and strain rate dependence of bcc metals [13] and the effects of simulation boundary 
conditions on predicted work-hardening behavior [14]. The 6 DOF experiment described in this 
work was developed to provide experimental data for further validation of DD simulations. 
Current validation criteria based on the Mo experiments may include comparing the stress-strain 



response using 3-D strain information, the predicted slip-system yield, and work-hardening 
behavior. Key validation criteria are described below.

3-D Stress-Strain Response: The 6 DOF experiments allow essentially unconstrained 
deformation of a single crystal under a condition of applied uniaxial stress. A possible approach 
for the validation of DD simulations is based on using the experimentally determined 1-D stress 
history as input for the simulation. The predicted states of tensor strain for a given “stress 
history” could then be compared to experimentally determined strain states. This is essentially a 
3-D validation of temporal stress-strain response.

Slip Planes: The slip-trace analysis of a test sample deformed to 0.6% axial strain has 
clearly identified three active slip planes. There could, of course, be slip activity on other planes. 
However, such slip activity would likely be minor in comparison to the slip activity that resulted 
in the observed traces. The results of DD simulations can be edited to determine slip-system 
activity. For the most part, the predicted slip activity should correspond to the experimentally 
observed slip planes.

Slip System Activity: The analysis in the Calculation of Slip System Activity section 
displays the extent to which slip activity and work-hardening behavior in five slip systems is 
consistent with the observed deformation. This information can be compared to DD simulation
predictions. If this analysis is extended to include all six slip systems operating on the three 
observed slip planes, the comparison of this slip-system activity may be the most critical 
validation criteria. Our initial analysis of slip activity on the three active slip planes, as described 
in the previous section, is a good starting point for this comparison. 

Dislocation Structures: Detailed TEM and X-ray topography of dislocation structures 
should also be compared to simulation results. For example, a thin region (on the order of 
0.1µm) can be “extracted” from a simulated dislocation structure and then allowed to relax 
using a free surface boundary condition. This DD result could then be compared to a TEM 
observation performed on thin foils harvested from deformed single crystals. 

DISCUSSION OF OBSERVED DEFORMATION RESPONSE OF MO SINGLE 
CRYSTAL

The 2,9,20[ ] compression axis of the Mo single crystal test samples was selected to 

promote “single slip,” with the primary slip system, 101( ) 111[ ], having a Schmid factor of 0.5. 

However, the observed deformation response was found to be inconsistent with “single slip” on 
this slip system. If the sole cause of deformation had been slip activity in the primary slip 
system, the displacement of the lower platen with respect to the upper platen would have been in 
the negative x direction, and there would not have been any displacement in the y axis. The 
observed displacement in the x direction was found to be opposite to this (i.e., positive x
displacement), and the displacement in the y direction was substantially greater than the 
displacement in the x direction. Future work is needed to understand this deformation response. 
It is interesting to note that the deformation of the test sample is such that the motion of the 
lower platen relative to the top acts to align the 001[ ] pole with the compression axis of the test 

sample (z axis). Although the mechanism associated with this motion is unknown, this 
deformation promotes the most symmetric orientation with respect to slip activity in the bcc 
structure.
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